Radioactive Cobalt(II) Removal from Aqueous Solutions Using a Reusable Nanocomposite: Kinetic, Isotherms, and Mechanistic Study
نویسندگان
چکیده
A lignocellulose/montmorillonite (LMT) nanocomposite was prepared as a reusable adsorbent for cobalt(II) ions, and characterized by nitrogen (N₂) adsorption/desorption isotherm, X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FTIR). LMT exhibited efficient adsorption of cobalt ions (Co(II)), and the adsorbed Co(II) was readily desorbed by nitric acid (HNO₃). All parameters affecting the adsorption and/or desorption of Co(II), including initial Co(II) concentration, pH value, temperature, HNO₃ concentration, and time, were optimized. The kinetic data analysis showed that the adsorption followed the pseudo-second-order kinetic model and fit well into the Langmuir isotherm equation. Notably, the nanocomposite can be used four times without significantly losing adsorbent capability. The Energy-Dispersive X-ray (EDX) and FTIR spectra analysis also revealed that the adsorption mechanism may be mainly a chemical adsorption dominated process.
منابع مشابه
Adsorption of Co(II) ions from aqueous solutions using NiFe2O4 nanoparticles
In this study, NiFe2O4 nanoparticles (NiFe2O4 NPs) were prepared through co-precipitation method and subsequently used for the removal of Co(II) ions from aqueous solutions. The NiFe2O4 NPs were characterized by transmission electron microscopy (TEM), X-ray diffraction spectrometry (XRD), and Brunauer-Emmett-Teller (BET) surface area analysis. In batch tests, the effects of variables such as pH...
متن کاملResponse Surface Methodology Optimization of Cobalt (II) and Lead (II) Removal from Aqueous Solution Using MWCNT-Fe3O4 Nanocomposite
The present investigation describes the evaluation of feasibility of MWCNT-Fe3O4 nanocomposite toward adsorptive removal of Co(II) and Pb(II) from aqueous solution in batch mode. The Fe3O4–MWCNT hybrid was prepared using a simple one-pot strategy via in situ growth of Fe3O4 magnetic nanoparticles onto the surface of the MWCNT...
متن کاملFe3O4@Polydopamine Core-Shell Nanocomposite as a Sorbent for Efficient Removal of Rhodamine B from Aqueous Solutions: Kinetic and Equilibrium Studies
In this work, a Fe3O4@polydopamine core-shell nanocomposite (Fe3O4/PDA) was synthesized through an in situ self-polymerization methods and was applied as a sorbent for Rhodamine B (RhB) removal. The synthetic procedure is simple and involves no organic solvents. The as-prepared Fe3O4/PDAnanocomposite was characterized by tran...
متن کاملThe Use of Corn cob Micro Powder as a Low Cost Adsorbent, for the Removal of Co2+Ion from Aqueous Solutions and from the View Point Thermodynamics
Corn cob as a low cost adsorbent was used in the present work for the removal of toxic heavy metal Co2+ from aqueous solutions. Bath experiments were used to determine the best adsorption conditions. The equilibrium adsorption level was determined as a function of solution pH, temperature (T), contact time (tc), initial adsorbate concentration, and adsorbent dosage. Effective removal of metal i...
متن کاملSynthesized some copolymer derivative of poly (Styrene –alternative- Maleic Anhydride) (SMA) for removal Cobalt (II) ions from aqueous solutions and determination residual cobalt (II) ions by using spectrophotometric method
Chelating resins have been considered to be suitable materials for the recovery of heavy metals in water treatments. A chelating resin based on modified poly(styrene-alt-maleic anhydride) with Melamine was synthesized. This modified resin was further reacted with 1,2-diaminoethan in the presence of ultrasonic irradiation for the preparation of a tridimensional chelating resin on the nanoscale f...
متن کامل